Data-driven design of bi-selective OSDAs for intergrowth zeolites

24 September 2021, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Zeolites are inorganic materials with wide industrial applications due to their topological diversity. Tailoring confinement effects in zeolite pores, for instance by crystallizing intergrown frameworks, can improve their catalytic and transport properties, but controlling zeolite crystallization often relies on heuristics. In this work, we use computational simulations and data mining to design organic structure-directing agents (OSDAs) to favor the synthesis of intergrown zeolites. First, we propose design principles to identify OSDAs which are selective towards both end members of the disordered structure. Then, we mine a database of hundreds of thousands of zeolite-OSDA pairs and downselect OSDA candidates to synthesize known intergrowth zeolites such as CHA/AFX, MTT/TON, and BEC/ISV. The computationally designed OSDAs balance phase competition metrics and shape selectivity towards the frameworks, thus bypassing expensive dual-OSDA approaches typically used in the synthesis of intergrowths. Finally, we propose potential OSDAs to obtain hypothesized disordered frameworks such as AEI/SAV. This work may accelerate zeolite discovery through data-driven synthesis optimization and design.

Keywords

zeolite
intergrowth
simulations
data mining
organic structure-directing agents

Supplementary materials

Title
Description
Actions
Title
Supporting Information for: Data-driven design of bi-selective OSDAs for intergrowth zeolites
Description
Supporting information for the manuscript.
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.