Multifunctional Polyoxometalate-Platforms for Supramolecular Light-driven Hydrogen Evolution

24 September 2021, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Multifunctional supramolecular systems are a central research topic in light-driven solar energy conversion. Here, we report a polyoxometalate (POM)-based supramolecular dyad, where two platinum-complex hydrogen evolution catalysts are covalently anchored to an Anderson polyoxomolybdate anion. Supramolecular electrostatic coupling of the system to an iridium photosensitizer enables visible light-driven hydrogen evolution. Combined theory and experiment demon-strate the multifunctionality of the POM, which acts as photosensitizer / catalyst-binding-site and facilitates light-induced charge-transfer and catalytic turnover. Chemical modification of the Pt-catalyst site leads to increased hydrogen evolution reactivity. Mechanistic studies shed light on the role of the individual components and provide a molecular understanding of the interactions which govern stability and reactivity. The system could serve as a blueprint for multifunctional polyoxometalates in energy conversion and storage.

Supplementary materials

Title
Description
Actions
Title
Supporting Information
Description
Supporting information containing synthetic, analytical, computational and spectroscopic details.
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.