AtomNet PoseRanker: Enriching Ligand Pose Quality for Dynamic Proteins in Virtual High Throughput Screens

24 September 2021, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Structure-based, virtual High Throughput Screening (vHTS) methods for predicting ligand activity in drug discovery are important when there are no or relatively few known compounds that interact with a therapeutic target of interest. State-of-the-art computational vHTS necessarily relies on effective methods for pose sampling and docking to generate an accurate affinity score from the docked poses. However, proteins are dynamic; in vivo, ligands bind to a conformational ensemble. In silico docking to the single conformation represented by a crystal structure can adversely affect the pose quality. Here we introduce AtomNet PoseRanker, a graph convolutional network trained to identify, and re-rank crystal-like ligand poses from a sampled ensemble of protein conformations and ligand poses. In contrast to conventional vHTS methods that incorporate receptor flexibility, a deep learning approach can internalize valid cognate and non-cognate binding modes corresponding to distinct receptor conformations. AtomNet PoseRanker significantly enriched pose quality in docking to cognate and non-cognate receptors of the PDBbind v2019 dataset. Improved pose rankings that better represent experimentally observed ligand binding modes improve hit rates in vHTS campaigns, and thereby advance computational drug discovery, especially for novel therapeutic targets or novel binding sites.

Keywords

virtual high throughput screening
structure based drug discovery
deep learning
protein conformational heterogeneity

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.