Improvement of the Gaussian Electrostatic Model by Separate Fitting of Coulomb and Exchange-Repulsion Densities and Implementation of a new Dispersion term

23 September 2021, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

The description of each separable contribution of the intermolecular interaction is a useful approach to develop polarizable force fields (polFF). The Gaussian Electrostatic Model (GEM) is based on this approach, coupled with the use of density fitting techniques. In this work, we present the implementation and testing of two improvements of GEM: the Coulomb and Exchange-Repulsion energies are now computed with separate frozen molecular densities, and a new dispersion formulation inspired by the SIBFA polFF, which has been implemented to describe the dispersion and charge–transfer interactions. Thanks to the combination of GEM characteristics and these new features, we demonstrate a better agreement of the computed structural and condensed properties for water with experimental results, as well as binding energies in the gas phase with the ab initio reference compared with the previous GEM* potential. This work provides further improvements to GEM and the items that remain to be improved, and the importance of the accurate reproduction for each separate contribution.

Keywords

Polarizable force fields
Water model

Supplementary materials

Title
Description
Actions
Title
GEM-SI
Description
Additional data and figures
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.