Abstract
Here, we propose and provide in silico proof of concept of a spinristor; a new molecular electronic component that combines a spin-filter, a rectifier, and a switch, in a single molecule for in-memory processing. It builds on the idea of an open-shell transition metal ion enclosed within an elliptical fullerene connected to the source, drain, and a pair of gate electrodes. The spin- and electronic polarization due to the enclosed metal leads to differential rectification of the electrons at low voltages applied between the source-drain electrodes, VSD. The position of the encapsulated ion can be switched by a combination of a high VSD and a voltage applied between gate electrodes, VG, to switch the direction of the rectification and spin-filtering ratio. The system can thus be used as a switching rectifier and spin-filter, a spinristor. To the best of our knowledge, such a system has no macroscopic counterpart in electronics.