Tracking the Catalyst Layer Depth-Dependent Electrochemical Degradation of a Bimodal Pt/C Fuel Cell Catalyst: A Combined Operando Small- and Wide-Angle X-Ray Scattering Study

21 September 2021, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

The combination of operando small- and wide-angle X-ray scattering (SAXS, WAXS) in grazing incidence configuration is presented as a new approach to provide depth-dependent insights into the changes in mean particle sizes and phase fractions occurring for fuel cell catalysts during accelerated stress tests (ASTs). As fuel cell catalyst, a bimodal Pt/C catalyst was chosen that consists of two distinguishable particle size populations. The presence of the two different sizes should favor and uncover electrochemical Ostwald ripening as the major degradation mechanism, i.e., it is expected that the size of the larger particles in the Pt/C catalyst grows at the expense of the smaller particles. The grazing incidence mode performed at the European Synchrotron Radiation Facility (ESRF) at the ID31 beamline revealed an intertwinement of the depth dependent degradation. While the larger particles show the same particle size changes close to the electrolyte-catalyst interface and within the catalyst layer, for the smaller Pt nanoparticles a different degradation scenario is observed. At the electrolyte-catalyst interface, the smaller particles increase in size while their phase fraction decreases during the AST. However, in the inner catalyst layer the phase fraction of smaller particles increases instead of decreases. The results of a depth-dependent degradation strongly suggest to employ a depth-dependent catalyst design for future improvement of the catalyst stability.

Supplementary materials

Title
Description
Actions
Title
Supporting information: Tracking the Catalyst Layer Depth-Dependent Electrochemical Degradation of a Bimodal Pt/C Fuel Cell Catalyst: A Combined Operando Small- and Wide-Angle X-Ray Scattering Study
Description
Details about SAXS and WAXS data analysis and parameters
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.