Catalysis

First-row Transition Metal Antimonates for the Oxygen Reduction Reaction

Authors

Abstract

The development of inexpensive and abundant catalysts with high activity, selectivity, and stability for the oxygen reduction reaction (ORR) is imperative for the widespread implementation of fuel cell devices. Herein, we present a combined theoretical-experimental approach to discover and design first-row transition metal antimonates as promising electrocatalytic materials for the ORR. Theoretically, we identify first-row transition metal antimonates – MSb2O6, where M = Mn, Fe, Co, and Ni – as non-precious metal catalysts with promising oxygen binding energetics, conductivity, thermodynamic phase stability and aqueous stability. Among the considered antimonates, MnSb2O6 shows the highest theoretical ORR activity based on the 4e− ORR kinetic volcano. Experimentally, nanoparticulate transition metal antimonate catalysts are found to have a minimum of a 2.5-fold enhancement in intrinsic mass activity (on transition metal mass basis) relative to the corresponding transition metal oxide at 0.7 V vs RHE in 0.1 M KOH. MnSb2O6 is the most active catalyst under these conditions, with a 3.5-fold enhancement on a per Mn mass activity basis and 25-fold enhancement on a surface area basis over its antimony-free counterpart. Electrocatalytic and material stability are demonstrated over a 5 h chronopotentiometry experiment in the stability window identified by Pourbaix analysis. This study further highlights the stable and electrically conductive antimonate structure as a promising framework to tune the activity and selectivity of non-precious metal oxide active sites for ORR catalysis.

Content

Thumbnail image of ORR_Antimonates_Manuscript.pdf

Supplementary material

Thumbnail image of ORR_Antimonates_Manuscript_SI.pdf
First-row Transition Metal Antimonates for the Oxygen Reduction Reaction
Supporting Information