RETRACTED: Electrocatalytic CO2 hydrogenation to C2 based products through C–C coupling over Cu(100) nanocube

15 September 2021, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

In this study, we have considered a Cu nanocube (Cu-NC) based catalyst exposed with (100) facets for CO2 hydrogenation reactions. All the feasible mechanistic pathways for the formations of C1 (HCOOH, CH3OH and CH4) and C2 (C2H4 and C2H5OH) based products have been explored using the density functional theoretical calculations and the most plausible pathways have been identified. The calculated results are compared with the previous reports on the periodic Cu(100) and Cu(111) surfaces, and also on the surface of Cu85 nanocluster and Cu(111) monolayer. The in-depth mechanistic investigation shows that Cu-NC can be very selective towards the C2 based products with a lower limiting potential (calculated) compared to the periodic surfaces. The underlying reasons for such findings have been explained and compared that with the periodic surfaces. We therefore, propose that the Cu-NC based catalysts can be more promising for C2 based products.

Keywords

Cu(100) nanocube
CO2 hydrogenation
methanol
ethylene
ethanol
density functional theory

Supplementary materials

Title
Description
Actions
Title
Supporting Information
Description
Electrocatalytic CO2 hydrogenation to C2 based products through C–C coupling over Cu(100) nanocube Supporting Information
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.