Relative Binding Free Energy Predictions for Inhibitors of Tetrameric Influenza Virus Neuraminidase

14 September 2021, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Accurate methods to predict the free energies of protein-ligand interactions have great potential to assist rational drug design. In this work, we used molecular dynamics simulations with alchemical perturbation to predict the binding of carbohydrate-based ligands to influenza virus neuraminidase (N2). This specific drug target is a challenging test system for alchemical free energy methods because it has flexible binding site motifs. We use a molecular dynamics protocol that works for longer time scales than are often reported in previous molecular dynamics studies of N2. We demonstrated that N2-ligand complex stability and that accurate N2 150-loop dynamics, on a 350 ns time scale, are both force field-dependent (AMBER99SB-ILDN, GAFF and TIP4P water are required). Further, we showed that crystallographic waters must be retained to maintain stability of N2-ligand complexes over 350 ns. Using our modelling protocol, we were able to determine relative binding free energy values between neuraminidase ligands which correlated strongly with experimental differences in pIC50 values (R = -0.96, ρ = 0.86, N = 13, sig < 0.0001). It is anticipated that the molecular dynamics protocol and the relative binding free energy methods reported here, will both be useful in expediting the discovery of novel therapeutics for N2 and other homologous glycohydrolases.

Keywords

Neuraminidase
Free energy perturbation
Glycohydrolase
Ligand binding
Molecular dynamics
Relative free energy calculations
Influenza
Tamiflu
Relenza
150-loop
Dynamics
Rational drug design

Supplementary materials

Title
Description
Actions
Title
Table S1
Description
Full list of relative binding free energy values from BAR, before and after hysteresis correction by cycle closure.
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.