Materials Science

Structural deformation and mechanical response of CrS2, CrSe2 and Janus CrSSe

Authors

  • Shambhu Bhandari Sharma Goldengate International College, Tribhuvan University, Kathmandu, Nepal ,
  • Ramesh Paudel Nepal Academy of Science and Technology, Khumaltar, Lalitpur, Nepal ,
  • Rajendra Adhikari Department of Physics, Kathmandu University, Dhulikhel, Kavre, Nepal ,
  • Gopi Chandra Kaphle Central Department of Physics, Tribhuvan University, Kirtipur, Kathmandu, Nepal ,
  • Durga Paudyal Ames Laboratory, Iowa State University, Ames, IA 50011 , USA

Abstract

In the framework of density functional theory (DFT), we investigate the structural deformation, and mechanical behavior of the Janus CrSSe, which has out-of-plane structural asymmetry, with conventional transition metal dichalcogenides (TMDs) CrS2 and CrSe2 . The Janus CrSSe could be a potential candidate for machinable optoelectronic and piezoelectric applications. We predict that these compounds are chemically, mechanically, and dynamically stable with the covalent bond between the TM(Cr) and chalcogen(X=S, Se) atoms. Due to the influence of tensile strain, the Cr-X bond length of each monolayers increases, and the thickness decreases. Interestingly, the in-plane stiffness, shear and layer moduli, Poisson’s ratio, ultimate bi/uni-axial stress of Janus CrSSe are in between the values of CrS2 and CrSe2 monolayers. Similar to TMDs, the orientation-dependent in-plane stiffness and Poisson’s ratio demonstrate the isotropic behavior in Janus CrSSe. Furthermore, it can sustain a larger value of uni/bi-axial tensile strain with the critical strain equivalent to CrX2 monolayers. By applying higher-order strain, we have also found average elastic-plastic behavior as expected. These findings demonstrate that the Janus CrSSe monolayer is a mechanically stable and ductile compound that maintains the hybrid behavior.

Content

Thumbnail image of manuscript.pdf