Structural deformation and mechanical response of CrS2, CrSe2 and Janus CrSSe

13 September 2021, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

In the framework of density functional theory (DFT), we investigate the structural deformation, and mechanical behavior of the Janus CrSSe, which has out-of-plane structural asymmetry, with conventional transition metal dichalcogenides (TMDs) CrS2 and CrSe2 . The Janus CrSSe could be a potential candidate for machinable optoelectronic and piezoelectric applications. We predict that these compounds are chemically, mechanically, and dynamically stable with the covalent bond between the TM(Cr) and chalcogen(X=S, Se) atoms. Due to the influence of tensile strain, the Cr-X bond length of each monolayers increases, and the thickness decreases. Interestingly, the in-plane stiffness, shear and layer moduli, Poisson’s ratio, ultimate bi/uni-axial stress of Janus CrSSe are in between the values of CrS2 and CrSe2 monolayers. Similar to TMDs, the orientation-dependent in-plane stiffness and Poisson’s ratio demonstrate the isotropic behavior in Janus CrSSe. Furthermore, it can sustain a larger value of uni/bi-axial tensile strain with the critical strain equivalent to CrX2 monolayers. By applying higher-order strain, we have also found average elastic-plastic behavior as expected. These findings demonstrate that the Janus CrSSe monolayer is a mechanically stable and ductile compound that maintains the hybrid behavior.

Keywords

mechanical anisotropy
elasticity
deformation
Janus
Density funtional theory

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.