Cationic Effects on the Effective Hydrogen Atom Bond Dissociation Free Energy of High Valent Manganese Imido Complexes

13 September 2021, Version 1
This content is a preprint and has not undergone peer review at the time of posting.


Local electric fields can alter energy landscapes to impart enhanced reactivity in enzymes and at surfaces. There has been renewed interest on their use in molecular systems, where they can be installed using charged functionalities. Manga-nese(V) salen nitrido complexes (salen = N,N’-ethylenebis(salicylideneaminato)) appended with a crown ether unit con-taining a Na+ (1-Na), K+, (1-K), Ba2+ (1-Ba), Sr2+ (1-Sr), La3+ (1-La), or Eu3+ (1-Eu) cation were investigated to experimen-tally demonstrate the effect of cation-induced electric fields on pKa, E1/2, and the effective bond dissociation free energy (BDFE) of N–H bonds. The series, which includes the manganese (V) salen nitrido without a crown appended, spans 4 units of charge. Bounds for the pKa values of the transient imido complexes were determined by UV-visible and 1H NMR spectroscopy. These values, together with the reduction potentials for the Mn(VI/V) couple measured by cyclic voltamme-try in acetonitrile, were used to calculated the N–H BDFEs of the imidos. Despite spanning >700 mV and >9 pKa units across the series, the hydrogen atom BDFE only spans ~ 5 kcal/mol (between 76 and 81 kcal/mol). These results suggest that incorporation of cationic functionalities is an effective strategy for accessing wide ranges of reduction potentials and pKa while minimally affecting BDFE, which is essential to modulating electron, proton, or hydrogen atom transfer path-ways.


electric fields
reduction potential

Supplementary materials

Supplementary Information
Additional experimental details and data.


Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.