Physical Chemistry

Strong bidentate coordination for surface passivation and ligand-shell engineering of lead halide perovskite nanocrystals in the strongly quantum confined regime

Authors

Abstract

The surface of lead halide perovskite nanocrystals (PNCs) is unique compared to conventional metal chalcogenide or pnictogenide semiconductor nanoparticles for its ionic character and the dynamic ligand layer, which makes them unstable in stock solutions and hinders the development of surface engineering strategies. This work employs a chelating strategy to form stable coordination on the PNC surface. Through screening a series of heterocyclic aromatic carboxylates, we found the best ligand, picolinate (PIC), with exceptional passivation effect to the surface traps of CsPbBr3 PNCs in the strongly quantum confined regime, resulting in > 0.8 photoluminescence quantum yields. The exciton lifetime in the passivated PNC approaches the radiative decay limit in various solvents. From an NMR titration experiment, the binding affinity of PIC is estimated to be at least 15 to 30 folds stronger than the original ligand from synthesis. The NMR and FTIR spectroscopic data and first-principles calculations elucidate the bidentate nature of the PIC coordination at the surface Pb site and the coadsorption of the ammonium-PIC ion pair. In apolar solvents, such as cyclohexane, the binding of PIC is stoichiometric to the available surface sites, suggesting the structure as a potent candidate for anchoring functional molecular structures to the PNC surface. In polar solvents, the strong affinity of PIC on the PNC surface provides protection for carrying out the precipitation-redissolution purification procedure that removes synthetic residual from the as-synthetic PNC samples. By modifying the purification procedure, we also develop a cation exchange procedure to replace the original oleylammonium cation with desired structures that consist of an ammonium anchoring group. Our results provide a direction for constructing strong interactions to protect the vulnerable surface of PNCs and pave the road for developing surface engineering strategies to functionalize these nanoparticles.

Version notes

Corrected a typo in the title. Added one reference in the main text (ref. 61) that acknowledges the use of free software to prepare the figure. Added funding source.

Content

Thumbnail image of PNC_BidentateLigand_1.12.pdf

Supplementary material

Thumbnail image of PNC_BidentateLigand_1.12_with SI.pdf
Strong bidentate coordination for surface passivation and ligand-shell engineering of lead halide perovskite nanocrystals in the strongly quantum confined regime
Materials and Experimental; Estimation of k_r/k_(nr,trap);The protection effect of PIC; PIC has no effect to quantum confinement;Simple L-type ligands show little passivation effect;The degradation of PNCs with overly added PIC; PL kinetics of PNCs in various solvents; Decomposition of 1HNMR signals in the alkene region; Quantifying the strongly adsorbed PIC ligands; Titrating the purified PNC sample with the OctAm+OA- ligand;2D-NOESY NMR spectrum; DFT results of different binding configurations; FTIR spectra of PNC and the vibrational modes of PIC