Abstract
New strategies to access radicals from common feedstock chemicals hold the potential to broadly impact synthetic chemistry. We report a dual phosphine and photoredox catalytic system that enables direct formation of sulfonamidyl radicals from primary sulfonamides. The method is proposed to proceed via -scission of the sulfonamidyl radical from a phosphoranyl radical intermediate, generated upon sulfonamide nucleophilic addition to a phosphine radical cation. As compared to the recently well-explored β-scission chemistry of phosphoranyl radicals, this strategy is applicable to activation of N-based nucleophiles and is catalytic in phosphine. We highlight application of this activation strategy to an intermolecular anti-Markovnikov hydroamination of unactivated olefins with primary sulfonamides. A range of structurally diverse secondary sulfonamides can be prepared in good to excellent yields under mild conditions.
Supplementary materials
Title
Supporting Information
Description
Experimental procedures, experimental data, and characterization and spectral data of new compounds
Actions