Activation of Cellulose with Alkaline Earth Metals

07 September 2021, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Alkaline earth metal ions accelerate the breaking of cellulose bonds and control the distribution of products in the pyrolysis of lignocellulose to biofuels and chemicals. Here, the activation of cellulose via magnesium ions was measured over a range of temperatures from 370 to 430 ⁰C for 20 to 2000 milliseconds and compared with activation of cellulose via calcium, another naturally-occurring alkaline earth metal in lignocellulose materials. The experimental approach of pulse heated analysis of solid/surface reactions (PHASR) showed that magnesium significantly catalyzes cellulose activation with a second order rate dependence on the catalyst concentration. An experimental barrier of 45.6 ± 2.1 kcal mol-1 and a pre-factor of 1.18 x 1016 (mmol Mg2+ / g CD)-2 * s-1 was obtained for the activation of α-cyclodextrin (CD), a cellulose surrogate, for catalyst concentrations of 0.1 to 0.5 mmol Mg+2 per gram of CD. First principles density functional theory calculations showed that magnesium ions play a dual role in catalyzing the reaction by breaking the hydrogen bonds with hydroxymethyl groups and destabilizing the reacting cellulose chain, thus making it more active. The calculated barrier of 47 kcal mol-1 is in agreement with the experimentally measured barriers and similar to that for calcium ion catalysts (~50 kcal mol-1).

Keywords

Cellulose
Activation
Magnesium
Calcium
Transglycosylation

Supplementary materials

Title
Description
Actions
Title
Supplementary information for "Activation of Cellulose with Alkaline Earth Metals"
Description
Tabulated data
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.