Alteration in H-bond strength affects the stability of codon-anticodon interaction at in-frame UAG stop codon during in vitro translation

06 September 2021, Version 2
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

We have studied the decoding ability of a non-standard nucleobase modified tRNA for non-natural amino acid mutagenesis. The insertion of 2, 6-diaminopurine (D) base at the 3rd position of a tRNA anticodon enabled us to evaluate the effect of an additional hydrogen bond during translation. The presence of D at the tRNA anticodon led to stabilization of the codon-anticodon interaction due to an additional H-bond between the N2-exocyclic amine of D and the C2 carbonyl group of uracil during protein translation. While decoding UAG codons using stop codon suppression methodology, the enhanced codon-anticodon interaction improved codon readthrough and synthesis of modified protein with a non-natural amino acid at multiple sites. Our findings imply that the number of hydrogen bonds at the tRNA-mRNA duplex interface is an important criterion during mRNA decoding and improves protein translation at multiple UAG stop sites. This work provides valuable inputs towards improved non-natural amino acid mutagenesis for creating functional proteins.

Keywords

Codon-anticodon interaction
amber suppression
release factor 1
non-natural amino acid
suppressor tRNA

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.