Abstract
Combined chemical technologies of microbial fermentation and thermal catalysis provides a hybrid process for sustainable manufacturing of biorenewable sugar-derived monomers for plastics. In this work, methacrylic acid (MAA), a target molecule for the polymer industry, was produced from biomass-derived glucose through the intermediate molecule, citramalic acid. The biosynthetic pathway engineered in E. coli produced citramalic acid intermediate with a high yield (91% of theoretical maximum) from glucose by overexpressing citramalate synthase, removing downstream degradation enzyme 3-isopropylmalate dehydratase, and optimizing the fermentation medium. Thermal heterogeneous catalysis converted the citramalate intermediate to methacrylic acid (MAA) via decarboxylation and dehydration. A selectivity of ~71% for the production of MAA and its intermediate α-hydroxybutyric acid was achieved at a temperature of 250 oC and an acidity of 1.0 mol acid/mol citramalate. An alumina catalyst was found to enhance selectivity to MAA in a single reactor pass from 45.6% in the absence of catalyst to 63.2%. This limited selectivity to MAA was attributed to equilibrium between MAA and α-hydroxybutyric acid, but overall process selectivity to MAA was shown to be higher upon separation and recycle of reaction intermediates. A process flow diagram was proposed of the hybrid route for the conversion of glucose to the final end product, methacrylic acid, for poly(methyl methacrylate) (PMMA).
Supplementary materials
Title
Supplementary Information for Sustainable Hybrid Route to Renewable Methacrylic Acid via Biomass-Derived Citramalate
Description
Supplementary information for "Sustainable Hybrid Route to Renewable Methacrylic Acid via Biomass-Derived Citramalate" including product identification and analysis
Actions