Theoretical and Computational Chemistry

Modelling the structure and interactions of intrinsically disordered peptides with multiple-replica, metadynamics-based sampling methods and force-field combinations

Authors

Abstract

Intrinsically disordered proteins (IDPs) play a key role in many biological processes, including the formation of biomolecular condensates within cells. A detailed characterization of their configurational ensemble and structure-function paradigm is crucial for understanding their biological activity and for exploiting them as building blocks in material sciences. In this work, we incorporate bias-exchange metadynamics and parallel-tempering well-tempered metadynamics with CHARMM36m and CHARMM22* to explore the structural and thermodynamic characteristics of a short archetypal disordered sequence derived from a DEAD-box protein. The conformational landscapes emerging from our simulations are largely congruent across methods and forcefields. Nevertheless, differences in fine details emerge from varying forcefield/sampling method combinations. For this protein, our analysis identifies features that help to explain the low propensity of this sequence to undergo self-association in vitro, which can be common to all force-field/sampling method combinations. Overall, our work demonstrates the importance of using multiple force-field/enhanced sampling method combinations for accurate structural and thermodynamic information in the study of general disordered proteins.

Content

Thumbnail image of DHH1N_Manuscript_Lietal.pdf

Supplementary material

Thumbnail image of DHH1N_Lietal_Supplementary_Information.pdf
Supplementary Material
Supplementary Notes 1-9