Theoretical and Computational Chemistry

Open-source Δ-quantum machine learning for medicinal chemistry

Authors

Abstract

Certain molecular design tasks benefit from fast and accurate calculations of quantum-mechanical (QM) properties. However, the computational cost of QM methods applied to drug-like compounds currently makes large-scale applications of quantum chemistry challenging. In order to mitigate this problem, we developed DelFTa, an open-source toolbox for predicting small-molecule electronic properties at the density functional (DFT) level of theory, using the Δ-machine learning principle. DelFTa employs state-of-the-art E(3)-equivariant graph neural networks that were trained on the QMugs dataset of QM properties. It provides access to a wide array of quantum observables by predicting approximations to ωB97X-D/def2-SVP values from a GFN2-xTB semiempirical baseline. Δ-learning with DelFTa was shown to outperform direct DFT learning for most of the considered QM endpoints. The software is provided as open-source code with fully-documented command-line and Python APIs.

Content

Thumbnail image of main.pdf

Supplementary material

Thumbnail image of SI.pdf
Supporting Information
Supporting Information for the main manuscript.

Supplementary weblinks

GitHub repository
DelFTa: Open-source Δ-quantum machine learning for medicinal chemistry