Open-source Δ-quantum machine learning for medicinal chemistry

03 September 2021, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Certain molecular design tasks benefit from fast and accurate calculations of quantum-mechanical (QM) properties. However, the computational cost of QM methods applied to drug-like compounds currently makes large-scale applications of quantum chemistry challenging. In order to mitigate this problem, we developed DelFTa, an open-source toolbox for predicting small-molecule electronic properties at the density functional (DFT) level of theory, using the Δ-machine learning principle. DelFTa employs state-of-the-art E(3)-equivariant graph neural networks that were trained on the QMugs dataset of QM properties. It provides access to a wide array of quantum observables by predicting approximations to ωB97X-D/def2-SVP values from a GFN2-xTB semiempirical baseline. Δ-learning with DelFTa was shown to outperform direct DFT learning for most of the considered QM endpoints. The software is provided as open-source code with fully-documented command-line and Python APIs.

Keywords

Density Functional Theory
Machine Learning
Delta-Learning
Quantum Machine Learning
Deep Learning
Open Source
Medicinal Chemistry

Supplementary materials

Title
Description
Actions
Title
Supporting Information
Description
Supporting Information for the main manuscript.
Actions

Supplementary weblinks

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.