Catalytic Reduction of Dinitrogen to Ammonia and Hydrazine Using Iron–Dinitrogen Complexes Bearing Anionic Benzene-Based PCP-type Pincer Ligands

Authors

Abstract

Among synthetic models of nitrogenases, iron–dinitrogen complexes with a Fe–C bond have attracted increasing attention in recent years. Here we report the synthesis of square-planar iron(I)–dinitrogen complexes supported by anionic benzene-based PCP- and POCOP-type pincer ligands as carbon donors. These complexes catalyze the formation of ammonia and hydrazine from the reaction of dinitrogen (1 atm) with a reductant and a proton source at -78 °C, producing up to 252 equiv of ammonia and 68 equiv of hydrazine (388 equiv of fixed N atom) based on the iron atom of the catalyst. Anionic iron(0)–dinitrogen complexes, considered an essential reactive species in the catalytic reaction, are newly isolated from the reduction of the corresponding iron(I)–dinitrogen complexes. This study examines their reactivity using experiments and DFT calculations.

Content

Supplementary material

Supplementary Information
Supplementary Information