Abstract
Mucin glycoproteins are essential components of the mucosal protective barrier, which constantly senses and clears the host from pathogens. Throughout evolution, bacteria and virus have developed strategies to modulate and penetrate the mucosal barrier and cause virulence by interacting with the glycans of membrane-bound mucins at the epithelial cell-surface. These interactions may promote bacteria cell-adhesion, biofilm formation, protein toxin delivery, or cause an inflammatory environment. O-fucosylated glycan epitopes are commonly found on mucin glycoproteins, and are key ligands of many bacterial and viral lectins (glycan binding proteins). Herein we describe a chemoenzymatic synthesis strategy to efficiently prepare an extensive library of fucosylated mucin core tandem repeats glycopeptides to elucidate the fine fucose-binding specificities of the Pseudomonas aeruginosa lectin LecB and the Clostridium difficile toxin A. Therefore, glycan core structures were decorated with terminal Lewis and H-antigens, which play critical roles in infection biology. The fucosylated mucin glycopeptides were applied in microarray binding studies to explore the importance of the glycan and peptide backbone presentation of these terminal antigens in binding interactions with the two bacterial lectins.
Supplementary materials
Title
Supporting information
Description
Supporting information
Actions