Increased Performance of an all-Organic Redox Flow Battery model by Nitration of the [4]Helicenium Ion Electrolyte

31 August 2021, Version 1
This content is a preprint and has not undergone peer review at the time of posting.


Redox Flow Batteries (RFBs) through their scalable design and virtually unlimited capacity, are promising candidates for large-scale energy storage. While recent advances in the development of redox-active bipolar organic molecules satisfy the prerequisites for the pioneering Symmetrical all-Organic Redox Flow Batteries (SORFBs) emerging, problems of low durability or low energy density remain a bottleneck for their wide-spread application. The present work reports that nitration of the [4]helicenium ion core (DMQA+) result in a significant enhancement of the electrochemical performance of DMQA as electrolyte for SORFBs. The physical and kinetic properties of NO2C+ were evaluated by cyclic voltammetry (CV) and UV-visible spectroscopy in acetonitrile and compared to those of its precursor HC+. The electrons storage ability of NO2C+ was investigated in three differents type of static H-cell experiments. In the first experiment, NO2C+ provided an open circuit voltage (OCV) of 2.24 V and demonstrated good stability, as well as high coulombic (>98%) efficiencies, over more than 200 charge/discharge cycles. In the second experiment, a charge-discharge cycling over the entire redox window of NO2C+ (OCV > 3 V) resulted in 80 cycles at a potential energy density above 12 Wh/L. During the last epxeriment, a bipolarization stress-test was performed during which NO2C+ demonstrated a remarkable durability of 90 cycles at 100% load with a perfect retention of capacity and coulombic efficiency. The electrochemical performance results of this enhanced redox material highlights that DMQA+ ions are robust and versatile materials for the emergence of symmetrical all-Organic ORFB


Redox Flow Battery
Energy Storage
Symmetric Organic RFB
High Voltage electrolyte
Helicenium ion

Supplementary materials

Supportive information for "Increased Performance of an all-Organic Redox Flow Battery model by Nitration of the [4]Helicenium Ions Electrolyte"
This document contains the general information, the electrochemical characterization of our electrolyte, DFT calculations, UV-Vis spectrum, and calibration curves.


Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.