Development of chimeric molecules that degrade the estrogen recep-tor using decoy oligonucleotide ligands

26 August 2021, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Targeted protein degradation using chimeric small molecules, such as proteolysis-targeting chimeras (PROTACs) and specif-ic and nongenetic inhibitors of apoptosis protein [IAP]-dependent protein erasers (SNIPERs), has attracted attention as a method to degrade intracellular target proteins via the ubiquitin-proteasome system (UPS). These chimeric molecules target a variety of proteins using small molecules that can bind to the proteins. However, it is difficult to develop such degraders in the absence of suitable small molecule ligands for the target proteins, such as for transcription factors (TFs). Therefore, we constructed the chimeric molecule LCL-ER(dec), which consists of a decoy oligonucleotide that can bind to the estrogen receptor alpha (ERalpha) and an IAP ligand, LCL161 (LCL), in a click reaction. LCL-ER(dec) was found to selectively degrade ERalpha via the UPS. These findings will be applicable to the development of other oligonucleotide-type degraders that target different TFs.

Keywords

ubiquitin-proteasome system
protein knockdown
decoy
transcription factors
estrogen receptor
PROTAC
SNIPER

Supplementary materials

Title
Description
Actions
Title
Development of chimeric molecules that degrade the estrogen recep-tor using decoy oligonucleotide ligands
Description
Supplementary Materials
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.