Engineering a Cytidine Aminotransferase for Biocatalytic Production of the Antiviral Molnupiravir

12 August 2021, Version 2
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

The COVID-19 pandemic highlights the urgent need for cost-effective processes to rapidly manufacture antiviral drugs at scale. Here we report a concise biocatalytic process for Molnupiravir, a nucleoside analogue currently in phase 3 clinical trials as an orally available treatment for SARS-CoV-2. Key to the success of this process was the development of a cytidine aminotransferase for the production of N-hydroxy-cytidine through evolutionary adaption of the hydrolytic enzyme cytidine deaminase. This engineered biocatalyst performs >100,000 turnovers in less than 30 minutes, operates at 180 g/L substrate loading and benefits from in situ crystallization of the N-hydroxy-cytidine product (>90% yield), which can be converted to Molnupiravir by a selective 5’-acylation using Novozym® 435.

Keywords

COVID_19
biocatalysis
Molnupiravir

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.