Supramolecular Catalysis of a Catalysis-Resistant Diels-Alder Reaction: Rapid Dimerization of Cyclopentadiene inside Cucurbit[7]uril

12 August 2021, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

In contrast to Diels-Alder reactions involving heteroatom-containing substrates, the endo dimerization of cyclopentadiene responds only very weakly to changes in microenvironment or the presence of potential catalysts (less than factor of 10 variation), although this pure hydrocarbon reaction has been used as an early model to predict the maximum possible catalytic effect (kcat/kuncat ca. 106 M) due to entropic contributions of a transition-state confinement (Page, M. I.; Jencks, W. P. Proc. Natl. Acad. Sci. USA 1971, 68, 1678). In the presence of cucurbit[n]uril homologues the reaction is selectively and almost maximally (kcat/kuncat ca. 4 × 105 M) accelerated by the intermediary sized cucurbit[7]uril in aqueous solution, while the other macrocyclic homologues display no acceleration or an inhibitory effect. The expected product inhibition due to the strong binding of the dicyclopentadiene reaction product can be overcome by addition of 10% methanol, which affords catalytic turnover numbers above 10. The reaction was monitored using 1H NMR spectroscopy as well as UV spectrophotometry. The analysis of the kinetic data, combined with packing coefficient considerations, modelling of Lennard-Jones potentials, and dispersion-corrected DFT calculations, suggest that the catalysis is due to an entropy-dominated transition-state stabilization in the tightly packed ternary complex.

Keywords

Diels-Alder reactions
Supramolecular catalysis
cucurbituril
Cyclopentadiene
Cyclopentadiene dimerization
Transition-state stabilization
Product inhibition

Supplementary materials

Title
Description
Actions
Title
Supplementary Information
Description
Experimental details, additional data, binding titrations, and fitting functions.
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.