On the Role of Heterojunctions of Core-Shell Heterostructures in Gas Sensing

06 August 2021, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Heterostructures made from semiconducting metal oxides (SMOX) are fundamental for the development of high-performance gas sensors. Yet, despite the recognition of their importance in real applications, the understanding of the transduction mechanism either related to the heterojunction, or simply to the core and shell materials is still lacking. A better understanding of the sensing response of heterostructured nanomaterials requires the engineering of heterojunctions with well-defined core and shell layers. Here, we introduce a series of prototypes nSMOX-CNT, pSMOX-CNT, and pSMOX-nSMOX-CNT and nSMOX-pSMOX-CNT hierarchical core-shell heterostructures (CSHS) permitting us to directly relate the sensing response to the SMOX shell, or to the p-n heterojunction. The carbon nanotubes are here used as highly conductive substrates permitting to operate the devices at relatively low temperature and are not involved in the sensing response. NiO and SnO2 are selected as representative p- and n-type SMOX, respectively, and the response of a set of samples is studied toward hydrogen considered as model analyte. The n,pSMOX-CNT CSHS exhibit response related to the n,pSMOX-shell layer. On the other hand, the pSMOX-nSMOX-CNT and nSMOX-pSMOX-CNT CSHS show sensing responses, which in certain cases are governed by the heterojunctions between nSMOX and pSMOX and strongly depends on the thickness of the SMOX layers. Due to the fundamental nature of this study, these findings are important for the development of next generation gas sensing devices.

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.