The presence and role of the intermediary CO reservoir in heterogeneous electroreduction of CO2

05 August 2021, Version 1
This content is a preprint and has not undergone peer review at the time of posting.


Despite the importance of the microenvironment in heterogeneous electrocatalysis, its role remains unclear due to a lack of suitable characterization techniques. Multi-step reactions like the electroconversion of CO2 to multicarbons (C2+) are especially relevant considering the potential creation of a unique microenvironment as part of the reaction pathway. To elucidate the significance of the microenvironment during CO2 reduction, we develop on-stream substitution of reactant isotope (OSRI), a new method which relies on the subsequent introduction of CO2 isotopes. Combining electrolytic experiments with a numerical model, this method reveals the presence of a reservoir of CO molecules concentrated near the catalyst surface that influences C2+ formation. Application of OSRI on a Cu nanoparticle (NP) ensemble and an electropolished Cu foil demonstrates that a CO monolayer covering the surface does not provide the amount of CO intermediates necessary to facilitate C-C coupling. Specifically, the C2+ turnover increases only after reaching a density of ~100 CO molecules per surface Cu atom. The Cu NP ensemble satisfies this criterion at an overpotential 100 mV lower than the foil, making it a better candidate for efficient C2+ formation. Furthermore, given the same reservoir size, the ensemble’s intrinsically higher C-C coupling ability is highlighted by the 4-fold higher C2+ turnover it achieves at a more positive potential. The OSRI method provides an improved understanding of how the presence of CO intermediates in the microenvironment impacts C2+ formation during the electroreduction of CO2 on Cu surfaces.


CO2 reduction

Supplementary materials

Supplementary Information
Methods ans supplementary materials.


Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.