Electrochemical Nitric Oxide Reduction on Metal Surfaces

02 August 2021, Version 2
This content is a preprint and has not undergone peer review at the time of posting.


Electrocatalytic denitrification is a promising technology for removing NOx species (NO3− , NO2− and NO). For NOx electroreduction (NOxRR), there is a desire for understanding the catalytic parameters that control the product distribution. Here, we elucidate selectivity and activity of catalyst for NOxRR. At low potential we classify metals by the binding of ∗NO versus ∗H. Analogous to classifying CO2 reduction by ∗CO vs ∗H, Cu is able to bind ∗NO while not binding ∗H giving rise to a selective NH3 formation. Besides being selective, Cu is active for the reaction found by an activity-volcano. For metals that does not bind NO the reaction stops at NO, similar to CO2-to-CO. At potential above 0.3 V vs RHE, we speculate a low barrier for N coupling with NO causing N2O formation. The work provide a clear strategy for selectivity and aims to inspire future research on NOxRR.


NOx reduction
Density Functional Theory
Ammonia Synthesis

Supplementary materials

Support Information
Supporting information related to computational details


Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.