Abstract
Native mass spectrometry (MS) has become a versatile tool for characterizing high-mass complexes and measuring biomolecular interactions. Native MS usually requires resolution of different charge states produced by electrospray ionization to measure the mass, which is difficult for highly heterogeneous samples that have overlapping and unresolvable charge states. Charge detection-mass spectrometry (CD-MS) seeks to address this challenge by simultaneously measuring the charge and m/z for isolated ions. However, CD-MS often shows uncertainty in the charge measurement that limits the resolution. To overcome this charge state uncertainty, we developed UniDecCD (UCD) software for computational de-convolution of CD-MS data, which significantly improves the resolution of CD-MS data. Here, we describe the UCD algorithm and demonstrate its ability to improve CD-MS resolution of proteins, megadalton viral capsids, and heterogeneous nanodiscs made from natural lipid extracts. UCD provides a user-friendly interface that will increase the accessibility of CD-MS technology and provide a valuable new computational tool for CD-MS data analysis.
Supplementary materials
Title
Supporting Information
Description
Supplemental Tables, Figures, and Methods
Actions