Shallow and deep trap states of solvated electrons in methanol and their formation, electronic excitation, and relaxation dynamics

30 December 2021, Version 2
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

We present condensed-phase first-principles molecular dynamics simulations to elucidate the presence of different electron trapping sites in liquid methanol and their roles in the formation, electronic transitions, and relaxation of solvated electrons (e−met) in methanol. Excess electrons injected into liquid methanol are most likely trapped by methyl groups, but rapidly diffuse to more stable trapping sites with dangling OH bonds. After localization at the sites with one free OH bond (1OH trapping sites), reorientation of other methanol molecules increases the OH coordination number and the trap depth, and ultimately four OH bonds become coordinated with the excess electrons under thermal conditions. The simulation identified four distinct trapping states with different OH coordination numbers. The simulation results also revealed that electronic transitions of e−met are primarily due to charge transfer between electron trapping sites (cavities) formed by OH and methyl groups and that these transitions differ from hydrogenic electronic transitions involving aqueous solvated electrons (e−aq). Such charge transfer also explains the alkyl-chain-length dependence of the photoabsorption peak wavelength and the excited-state lifetime of solvated electrons in primary alcohols.

Keywords

Solvated Electron Dynamics
Møller-Plesset perturbation theory
Hybrid Functional-Based Molecular Dynamics Simulation
Time Dependent Density Functional Theory Study

Supplementary materials

Title
Description
Actions
Title
SI
Description
SI
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.