Predicting the stability and electronic structure of alkali metal aurides

19 July 2021, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Density functional theory calculations of phonon modes predict that some compounds of the alkali metal aurides family, general formula A2MAu6 (A = K+, Rb+ or Cs+; M = Ti, Zr, Hf, Sn or Pb), have stable three-dimensional phase with a double perovskite-type structure and cubic Fm3m space group (K2PtCl6-type). Bader’s charge analysis shows that most electron density is located within the six atoms at the octahedra vertices like double perovskite halides. However, the short spacing between Au anions enables d-orbital interactions between them. Compounds of this family, with group 4 metals only, carry conduction states around the Gamma point (k = 0). On the other hand, compounds with group 14 metals possess more conduction states around all the Brillouin zone and have electron pockets in their bandstructure. These compounds provide further insights into the unusual anionic behavior of gold and present other alternatives for the construction of divergent nanodevices.

Keywords

Aurides
DFT
Double perovskite
Bader Charge
COHP

Supplementary materials

Title
Description
Actions
Title
SUPPORTING INFORMATION: Predicting the stability and electronic structure of alkali metal aurides
Description
Includes charts of used electronic configurations, interatomic distances and Bader's charges. Phonon band structures, phonon densities of states, electronic densities of states, Crystal Orbital Hamilton Populations and electronic band structures.
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.