1- and 2-Azetines via Visible Light-Mediated [2+2]-Cycloadditions of Alkynes and Oximes

09 July 2021, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Azetines, four-membered unsaturated nitrogen-containing heterocycles, hold great potential for drug design and development, but remain underexplored due to challenges associated with their synthesis. We report an efficient, visible light-mediated approach to-wards 1- and 2-azetines relying on alkynes and the unique triplet state reactivity of oximes, specifically 2-isoxazolines. While 2-azetine products are accessible upon intermolecular [2+2]-cycloaddition via triplet energy transfer from a commercially available iridi-um photocatalyst, the selective formation of 1-azetines proceeds upon a second, consecutive, energy transfer process. Mechanistic studies are consistent with a stepwise reaction mechanism via N-O bond homolysis following the second energy transfer event to result in the formation of 1-azetine products. Characteristic for this method is its operational simplicity, mild conditions and modular approach that allows for the synthesis of functionalized azetines and tetrahydrofurans via in situ hydrolysis from readily available precursors.

Keywords

Azetines
energy transfer catalysis
azetidines

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.