Biomimetic Brønsted Acid-Catalyzed Carbonyl-Olefin Metathesis Enabled by Hydrogen Bonding Networks

01 July 2021, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Synthetic chemists have learned to mimic nature in using hydrogen bonds and other weak interactions to dictate the spatial arrangement of reaction substrates and to stabilize transition states to enable highly efficient and selective reactions. The activation of a catalyst molecule itself by hydrogen bonding networks, in order to control its catalytic activity to achieve desired reaction outcomes is much less explored in organic synthesis, despite being a common strategy in nature. Herein, we show our investigation into this underexplored area by studying the promotion of carbonyl-olefin metathesis reactions by hydrogen bonding-assisted Brønsted acid catalysis. The carbonyl-olefin metathesis reaction has recently emerged as a powerful synthetic tool for functional group interconversion of carbonyls and alkenes. However, the application of Brønsted acid catalysts in carbonyl-olefin metathesis reaction, especially in homogeneous conditions, remains scarce and poorly understood. In this work, we report the use of hexafluoroisopropanol solvent in combination with para-toluenesulfonic acid to efficiently catalyze carbonyl-olefin metathesis reactions. Our experimental and computational mechanistic studies reveal not only an interesting role of HFIP solvent in assisting this Brønsted acid catalyzed reaction but also insightful knowledge about the current limitations of the carbonyl-olefin metathesis reaction.

Keywords

Bronsted acid catalysis
carbonyl-olefin metathesis
hydrogen-bonding network
catalyst activation
biomimetic chemistry

Supplementary materials

Title
Description
Actions
Title
Computational Supporting Information
Description
Computational Supporting Information
Actions
Title
Experimental Supporting Information
Description
Experimental Supporting Information
Actions

Supplementary weblinks

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.