Materials Chemistry

Structural and Electronic Effects of X-ray Irradiation on Prototypical [M(COD)Cl]2 Catalysts



X-ray characterisation techniques are invaluable for probing material characteristics and properties, and have been instrumental in discoveries across materials research. However, there is a current lack of understanding of how X-ray induced effects manifest in small molecular crystals. This is of particular concern as new X-ray sources with ever increasing brilliance are developed. In this paper, systematic studies of X-ray-matter interactions are reported on two industrially important catalysts, [Ir(COD)Cl]2 and [Rh(COD)Cl]2, exposed to radiation in X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) experiments. From these complimentary techniques, changes to structure, chemical environments, and electronic structure are observed as a function of X-ray exposure, allowing comparisons of stability to be made between the two catalysts. Radiation dose is estimated using recent developments to the RADDOSE-3D software for small molecules and applied to powder XRD and XPS experiments. Further insights into the electronic structure of the catalysts and changes occurring as a result of the irradiation are drawn from density functional theory (DFT). The techniques combined here offer much needed insight into the X-ray induced effects in transition metal catalysts and consequently, their intrinsic stabilities. There is enormous potential to extend the application of these methods to other small molecular systems of scientific or industrial relevance.


Thumbnail image of Ir_Rh_CODCl_Raddam_manuscript_210629.pdf

Supplementary material

Thumbnail image of Ir_Rh_CODCl_Raddam_SI_210629.pdf
Supplementary Information
All Supplementary Information as listed in the main manuscript