Enhancing thermally activated delayed fluorescence by fine-tuning the dendron donor strength

28 June 2021, Version 1


Thermally activated delayed fluorescence (TADF) relies on a small energy gap between the emissive singlet and the non-emissive triplet state, obtained by reducing the wavefunction overlap between donor and acceptor moieties. Efficient emission, however, requires maintaining a good oscillator strength, which is itself based on sufficient overlap of the wavefunctions between donor and acceptor moieties. We demonstrate an approach to subtly fine-tune the required wavefunction overlap by employing donor-dendrons of changing functionality. We use a carbazolyl-phthalonitrile based donor-acceptor core, 2CzPN, as a reference emitter, and progressively localize the hole density through substitution at the 3,6-positions of the carbazole donors (Cz) with further carbazole, (4-tert-butylphenyl)amine (tBuDPA) and phenoxazine (PXZ). Using detailed photoluminescence studies, complemented with Density Functional Theory (DFT) calculations, we show that this approach permits a gradual decrease of the singlet-triplet gap, ΔEST, from 300 meV to around 10 meV in toluene, yet we also demonstrate why a small ΔEST alone is not enough. While sufficient oscillator strength is maintained with the Cz- and tBuDPA-based donor dendrons, this is not the case for the PXZ-based donor dendron, where the wavefunction overlap is reduced too strongly. Overall, we find the donor-dendron extension approach allows successful fine-tuning of the emitter photoluminescence properties.



Supplementary materials

Supporting information to Enhancing thermally activated delayed fluorescence by fine-tuning the dendron donor strength
This ESI contains further information regarding 1. Literature Survey 2. DFT Calculations 3. X-ray Crystallography 4. Electrochemical and Photophysical Characterization 5. Synthesis and Chemical Characterization of Compounds 6. References


Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.