Abstract
Owing to their disordered open network structure, oxide glasses are a promising class of anode materials for Lithium-Ion Batteries (LIBs). However, the relatively low capacities of glass anodes severely limit their practical application for large energy storage devices. Here we show an unconventional novel approach, which significantly enhances the electrochemical performances of glass anodes for LIBs. Specifically, we incorporated water into an electrochemically active glass system, i.e., TeO2-V2O5-P2O5 (TVP) glass powder via humidity treatment, and then mix the hydrated powder with additives to fabricate anode. The optimized humidity treatment led to the structural modification of the TVP glass powder, which boosted the capacity of the TVP anode by more than 200%, and maintained the reversible capacity for extra-long cycles. The boosted performances are associated both with the depolymerized structural network for Li+ diffusion and with the hydration-induced nanocrystals. These findings help develop superior glass electrodes in an economically effective way.