Transient equilibrium mapping: A new tool for measuring the thermodynamics of slowly assembling supramolecular systems

22 June 2021, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Supramolecular chemistry involves the non-covalent assembly of monomers into materials with unique properties and wide-ranging applications. Thermal analysis is a key analytical tool in this field, as it provides quantitative thermodynamic information on both the structural stability and nature of the underlying molecular interactions. However there exist many supramolecular systems whose kinetics are so slow under conditions approaching equilibrium that thermodynamic data are inaccessible. We have developed a simple and rapid spectroscopic method for extracting thermodynamic parameters from these systems. It is based on repeatedly raising and lowering the temperature during assembly and identifying the points of transient equilibrium as they are passed on the up- and down-scans. In a proof-of-principle application to the co-assembly of polydeoxyadenosine containing 15 adenosines (polyA15) and cyanuric acid (CA), we found that roughly 30% of the CA binding sites on the polyA chains were unoccupied, with implications for the assembly of high-valence systems.

Keywords

Thermal Hysteresis
Transient Equilibrium
Self-Assembly
Thermodynamics

Supplementary materials

Title
Description
Actions
Title
Supplementary Information
Description
Supplementary information which is directly relevant to the conclusions of the paper.
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.