Blood, Sweat and Tears: Extraterrestrial Regolith Biocomposites with in Vivo Binders

15 June 2021, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

In this work, we explore the use of human serum albumin (HSA) – a common protein obtained from blood plasma – as a binder for simulated Lunar and Martian regolith to produce so-called extraterrestrial regolith biocomposites (ERBs). In essence, HSA produced by astronauts in vivo could be extracted on a semi-continuous basis and combined with Lunar or Martian regolith to produce a concrete-like material. Employing a simple fabrication strategy, HSA-based ERBs were produced and displayed compressive strengths as high as 25.0 MPa. For comparison, standard concrete typically has a compressive strength ranging between 20 and 32 MPa. The incorporation of urea – which could be extracted from the urine, sweat or tears of astronauts – could further increase the compressive strength by over 300% in some instances, with the best-performing formulation having an average compressive strength of 39.7 MPa. Furthermore, we demonstrate that HSA-ERBs can be 3D-printed, opening up an interesting potential avenue for extraterrestrial construction using human-derived feedstocks. The mechanism of adhesion was investigated and attributed to the dehydration-induced reorganisation of the protein secondary structure into a densely hydrogen-bonded, supramolecular β-sheet network – analogous to the cohesion mechanism of spider silk. For comparison, synthetic spider silk and bovine serum albumin (BSA) were also investigated as regolith binders – which could also feasibly be produced on a Martian colony with future advancements in biomanufacturing technology.

Keywords

Human serum albumin
biocomposites
in situ resource utilisation
biopolymer-bound soil composites
recombinant spider silk

Supplementary materials

Title
Description
Actions
Title
Roberts etal AA2021 SI
Description
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.