Identifying conformational isomers of organic molecules in solution via unsupervised clustering

13 April 2021, Version 3
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

We present a systematic approach for the identification of statistically relevant conformational macrostates of organic molecules from molecular dynamics trajectories. The approach applies to molecules characterised by an arbitrary number of torsional degrees of freedom and enables the transferability of the macrostates definition across different environments. We formulate a dissimilarity measure between molecular configurations that incorporates information on the characteristic energetic cost associated with transitions along all relevant torsional degrees of freedom. Such metric is employed to perform unsupervised clustering of molecular configurations based on the fast search and find of density peaks algorithm. We apply this method to investigate the equilibrium conformational ensemble of Sildenafil, a conformationally complex pharmaceutical compound, in different environments including the crystal bulk, the gas phase and three different solvents (acetonitrile, 1-butanol, and toluene). We demonstrate that, while Sildenafil can adopt more than one hundred metastable conformational configurations, only 12 are significantly populated across all the environments investigated. Despite the complexity of the conformational space, we find that the most abundant conformers in solution are the closest to the conformers found in the most common Sildenafil crystal phase.

Keywords

Clustering
Conformational isomerism
Sildenafil
Solution structure

Supplementary materials

Title
Description
Actions
Title
supplementary
Description
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.