Ab-Initio Computational Study on Fe2NiP schreibersite: Bulk and Surface Characterization

07 June 2021, Version 2
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Phosphorous is ubiquitous in planet Earth and plays a fundamental role in all living systems. Finding a reasonable prebiotic source of phosphorous is not trivial, as common sources where it is present nowadays are in the form of phosphate minerals, which are rather insoluble and non-reactive materials, and, accordingly, unavailable for being readily incorporated in living organisms. A possible source of phosphorous is from the exogenous meteoritic bombardment and, in particular, in iron/nickel phosphites. These materials, by simple interaction with water, produce oxygenated phosphorous compounds, which can easily react with organic molecules, thus forming C-O-P bonds. In the present work, periodic ab-initio simulations at PBE level (inclusive of dispersive interactions) have been carried out on metallic Fe2NiP-schreibersite, as a relative abundant component of metallic meteorites, in order to characterize structural, energetics and vibrational properties of both bulk and surfaces of this material. The aim is to study the relative stability among different surfaces, to characterize both the nanocrystal morphology and the reactivity towards water molecules.

Keywords

Schreibesite
DFT
Phosphorous problem

Supplementary materials

Title
Description
Actions
Title
schreibersite paper preprint esi
Description
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.