Abstract
Abstract
Identifying factors that influence interactions at the surface is still an active area of research. In this study, we present the importance of analyzing bondlength activation, while interpreting Density Functional Theory (DFT) results, as yet another crucial indicator for catalytic activity. We studied the
adsorption of small molecules, such as O 2 , N 2 , CO, and CO 2 , on seven face-centered cubic (fcc) transition metal surfaces (M = Ag, Au, Cu, Ir, Rh, Pt, and Pd) and their commonly studied facets (100, 110, and 111). Through our DFT investigations, we highlight the absence of linear correlation between adsorption energies (E ads ) and bondlength activation (BL act ). Our study indicates the importance of evaluating both to develop a better understanding of adsorption at surfaces. We also developed a Machine Learning (ML) model trained on simple periodic table properties to predict both, E ads and BL act . Our ML model gives an accuracy of Mean Absolute Error (MAE) ∼ 0.2 eV for E ads predictions and 0.02 Å for BL act predictions. The systematic study of the ML features
that affect E ads and BL act further reinforces the importance of looking beyond adsorption energies to get a full picture of surface interactions with DFT.
Identifying factors that influence interactions at the surface is still an active area of research. In this study, we present the importance of analyzing bondlength activation, while interpreting Density Functional Theory (DFT) results, as yet another crucial indicator for catalytic activity. We studied the
adsorption of small molecules, such as O 2 , N 2 , CO, and CO 2 , on seven face-centered cubic (fcc) transition metal surfaces (M = Ag, Au, Cu, Ir, Rh, Pt, and Pd) and their commonly studied facets (100, 110, and 111). Through our DFT investigations, we highlight the absence of linear correlation between adsorption energies (E ads ) and bondlength activation (BL act ). Our study indicates the importance of evaluating both to develop a better understanding of adsorption at surfaces. We also developed a Machine Learning (ML) model trained on simple periodic table properties to predict both, E ads and BL act . Our ML model gives an accuracy of Mean Absolute Error (MAE) ∼ 0.2 eV for E ads predictions and 0.02 Å for BL act predictions. The systematic study of the ML features
that affect E ads and BL act further reinforces the importance of looking beyond adsorption energies to get a full picture of surface interactions with DFT.
Supplementary materials
Title
Supplementary information
Description
Actions