Beads on a Chain (BoC) Fluorescent Oligomeric Materials: Interactions of Conjugated Organic Cross-Linkers with Silsesquioxane Cages

03 June 2021, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Organic electronic materials have advantages over inorganics in terms of versatility, cost and processability. Recent advancements in organic materials for light emitting diodes (OLED), field effect transistors (OFET), and photovoltaics have engendered extensive innovation potential on this field. In this research, we focus on synthesizing SQ (silsesquioxane) based oligomers cross- linked by di-bromo-aromatic linkers and explore how the cross-linker and oligomer length influence their photophysical properties. Bis-tri-alkoxy silyl (linker) model compounds were synthesized to compare non-cage photophysical properties with the oligomers. Several techniques such as UV/Vis, fluorescence, FTIR, thermal gravimetric analysis (TGA) have been used to characterize the systems. Time-resolved fluorescence and femtosecond transient absorption spectroscopy are used to understand the excited state dynamics of these materials. Studies are carried out to understand the differences between monomers and oligomers and potential energy transfer and charge transfer between the cages and cross-linking chromophores. Transient absorption showed lower energy absorption from the excited states, suggesting short range communication between moieties. Single photon counting studies have shown distinct lifetime differences between most linkers and cages showing possible excitation energy transfer through these materials. Transient absorption anisotropy measurements have shown signatures for excitation energy transfer between linker chromophores for oligomeric compounds. The silsesquioxane (SQ) backbone of the oligomers gives substantial thermal stability as well as solution processability, giving better flexibility for achieving energy transfer between linking chromophores.

Keywords

Silsesquioxane
POSS
Emission Materials
Hybrid Oligomers
Anisotropy
Transient Absorption
Energy Transfer
Charge Transfer

Supplementary materials

Title
Description
Actions
Title
SI- BoC preprint
Description
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.