Disorder Classification of the Vibrational Spectra of Modern Glasses

03 June 2021, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Using the coherent-potential approximation in heterogeneous-elasticity theory with a log-normal distribution of elastic constants for the description of the Raman spectrum and the temperature dependence of the specifi?c heat, we are able to reconstruct the vibrational density of states and characteristic descriptors of the elastic heterogeneity of a wide range of glassy materials. These descriptors are the non-affi?ne contribution to the shear modulus, the mean-square fluctuation of the local elasticity, and its correlation length. They enable a physical classification scheme for disorder in modern, industrially relevant glass materials.
We apply our procedure to a broad range of real-world glass compositions, including metallic,oxide, chalcogenide, hybrid and polymer glasses. Universal relationships between the descriptors on the one side, and the height and frequency position of the boson peak, the Poisson ratio and theliquid fragility index on the other side are established.

Keywords

Glass science
heterogeneity evaluation
elasticity theory

Supplementary materials

Title
Description
Actions
Title
SupportingData HETDisorder
Description
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.