Trans-cis Photoisomerization of a Biomimetic Cyclocurcumin Analogue Rationalized by Molecular Modelling

24 May 2021, Version 3
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Cyclocurcumin is a natural compound extracted from turmeric and showing, in addition to antiinfective, antibacterial, and intinflammatory capabilities, solvent-dependent phtoswitching ability. The solvent-dependent photochemistry of cyclocurcumin has been rationalized on the basis of a competition between π-π* and n-π* states. Recently we have reported the synthesis of a biomimetic analogue showing enhanced photochemical properties and in particular presenting photoswitching capacity in various media. In the present contribution we rely on the use of molecular modeling and simulation, incuding density functional and wavefunction based methods to explore the excited states potential energy surface landscape. We see that the addition of a carbon-carbon double bond to the core of the natural compounds favors the population of the π-π* state, whatever the choice of the solvent, and hence leads to photoisomerisation, with fluorescence reduced to only a minor channel, rationalizing the experimental observations. In addition, the two photon absorption cross section is also strongly increased compared to the parent compound, paving the way to the use in biologically oriented applications.

Keywords

Photoswitches
molecular modelling
CASSCF simulations
td-dft
Biomimetic analogues

Supplementary materials

Title
Description
Actions
Title
Suplementary Information-Trans-cis Photoisomerization of a Biomimetic Cyclocurcumin Analogue Rationalized by Molecular Modelling
Description
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.