Application Limits of the Ferrioxalate Actinometer

01 June 2021, Version 1
This content is a preprint and has not undergone peer review at the time of posting.


Evaluating the efficiency of newly designed photoreactors is crucial for systematic development and optimization of photochemical processes. A suitable tool is actinometry, prominently represented by the most widely studied and applied ferrioxalate system. However, such measurements show reproducible problems in the data consistency. This study scrutinizes these issues and approaches an experimental elucidation. An application limit for the ferrioxalate actinometer under intense irradiation was identified and experimentally validated. A drop of the quantum yield at high incident photon fluxes, generating high local concentrations of carboxyl radicals, leads to systematically wrong measurements. For reliable measurements with the ferrioxalate actinometry, a continuous operation mode or extensive mixing should be ensured.


Photonic Efficiency.


Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.