Improving Cycle Life Through Fast Formation Using a Super-Concentrated Phosphonium Based Ionic Liquid Electrolyte for Anode-Free and Lithium Metal Batteries

01 June 2021, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

ABSTRACT

Cell formation of lithium-ion cells impacts the evolution of the solid electrolyte interphase (SEI) and the cell cycle stability. Lithium metal anodes are an important step in the development of high energy density batteries owing to the high theoretical specific capacity of lithium metal. However, most lithium metal battery research has used a conventional lithium-ion formation protocol; this is time consuming, costly and does not account for the different properties of the lithium metal electrode. Here, we have used a recently reported promising phosphonium bis(fluorosulfonyl)imide ionic liquid electrolyte coupled with an NMC622 high areal capacity cathode (>3.5 mAh/cm2) to investigate the effect of cell formation rates. A faster formation protocol comprised of a pulsed 1.25C current decreased the formation time by 56 % and gave a 38 % greater capacity retention after 50 cycles when compared to formation at C/20. Electrochemical impedance spectroscopy measurements showed that the fast formation gave rise to a lower-resistance SEI. Column-like lithium deposits with reduced porous lithium domains between the particles were observed using scanning electron microscope imaging. To underline the excellent performance of these high energy-density cells, a 56 % greater stack specific energy was achieved compared to the analogous graphite-based lithium-ion cell chemistries.

Keywords

Lithium anode
superconcentrated electrolytes
batteries
high-rate cycling
ionic liquids
molecular dynamics simulation

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.