Twofold C-H Activation-Based Enantio- and Diastereoselective C-H Arylation Using Diarylacetylenes as Rare Arylating Reagents

31 May 2021, Version 1
This content is a preprint and has not undergone peer review at the time of posting.


C-H bond activation has been established as an attractive strategy to access axially chiral biaryls, and the most straightforward method is direct C-H arylation of arenes. However, the arylating source has been limited to several classes of reactive and bulky reagents. Reported herein is rhodium-catalyzed 1:2 coupling of diarylphosphinic amides and diarylacetylenes for enantio- and diastereoselective construction of biaryls with both central and axial chirality. This twofold C-H activation reaction stays contrast to the previously explored Miura-Satoh type 1:2 coupling of arenes and alkynes in terms of chemoselectivity and proceeded under mild conditions with the alkyne acting as a rare arylating reagent. Both C-H activation events are stereo-determining and are under catalyst control, with the 2nd C-H activation being diastereo-determining in a remote fashion. Analysis of the stereochemistries of the major and side products suggests moderated enantioselectivity of the initial C-H activation-desymmetrization process. However, the minor stereoisomeric (R) intermediate is consumed more readily in undesired protonolysis, eventually resulting in high enantio- and diastereoselectivity of the major product.


C-H activation
axial chirality

Supplementary materials



Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.