Life Cycle Assessment of Direct Air Carbon Capture and Storage with Low-Carbon Energy Sources

21 May 2021, Version 2
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Prospective energy scenarios usually rely on carbon dioxide removal (CDR) technologies to achieve the climate goals of the Paris Agreement. CDR technologies aim at removing CO2 from the atmosphere in a permanent way. However, the implementation of CDR technologies typically comes along with unintended environmental side-effects such as land transformation or water consumption. These need to be quantified before large-scale implementation of any CDR option by means of life cycle assessment (LCA). Direct air carbon capture and storage (DACCS) is considered to be among the CDR technologies closest to large-scale implementation, since first pilot and demonstration units have been installed and interactions with the environment are less complex than for biomass related CDR options. However, only very few LCA studies - with limited scope - have been conducted so far to determine the overall life-cycle environmental performance of DACCS. We provide a comprehensive LCA of different low temperature DACCS configurations - pertaining to solid sorbent-based technology - including a global and prospective analysis.

Keywords

Energy Science
CO2 capture and storage (CCS)
Negative Emissions Technology (NET)
Carbon Dioxide Removal (CDR)
Direct Air Capture (DAC)
DACCS

Supplementary materials

Title
Description
Actions
Title
SI Life Cycle Assessment of Direct Air Carbon Capture and Storage with low-carbon energy sources
Description
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.