Lithium-Conducting Self-Assembled Organic Nanotubes

26 May 2021, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Supramolecular polymers are compelling platforms for the design of stimuli-responsive materials with emergent functions. Here, we report the assembly of an amphiphilic nanotube for Li-ion conduction that exhibits high ionic conductivity, mechanical integrity, electrochemical stability, and solution processability. Imine condensation of a pyridine-containing diamine with a triethylene glycol functionalized isophthalaldehyde yields pore-functionalized macrocycles. Atomic force microscopy, scanning electron microscopy, and in solvo X-ray diffraction reveal that macrocycle protonation under their mild synthetic conditions drives assembly into high-aspect ratio (>103) nanotubes with three interior triethylene glycol groups. Electrochemical impedance spectroscopy demonstrates that lithiated nanotubes are efficient Li+ conductors, with an activation energy of 0.42 eV and a peak room temperature conductivity of 3.91 × 10-5 S cm-1. 7Li NMR and Raman spectroscopy demonstrate that lithiation occurs exclusively within the nanotube interior and implicates the glycol groups in facilitating efficient Li+ transduction. Linear sweep voltammetry and galvanostatic lithium plating-stripping tests reveal that this nanotube-based electrolyte is stable over a wide potential range and supports long-term cyclability. These findings demonstrate how coupling synthetic design and supramolecular structural control can yield high-performance ionic transporters that are amenable to device relevant fabrication. More broadly, these results demonstrate the technological potential of chemically designed self-assembled nanotubes.

Keywords

Macrocycles
Organic Nanotubes
Self-Assembly
Li-Ion Conduction
Li-Ion Batteries

Supplementary materials

Title
Description
Actions
Title
Strauss2021 Nanotubes Lithium Conductivity ChemRxiv SI
Description
Actions
Title
Strauss2021 Nanotubes Lithium Conductivity ChemRxiv TOC
Description
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.