Poly(ethylene Glycol-Block-2-Ethyl-2-Oxazoline) as Cathode Binder in Lithium-Sulfur Batteries

21 May 2021, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Functional binders constitute a strategy to overcome several challenges that lithium–sulfur (Li–S) batteries are facing due to soluble reaction intermediates in the positive electrode. Poly(ethylene oxide) (PEO) and poly(vinylpyrrolidone) (PVP) are in this context a previously well-explored binder mixture. Their ether and amide groups possess affinity to the dissolved sulfur species, which enhances the sulfur utilization and mitigates the parasitic redox shuttle. However, the immiscibility of PEO and PVP is a concern for electrode stability. Copolymers comprising ether and amide groups are thus promising candidates to improve the stability the system. Here, a series of poly(ethylene glycol-block-2-ethyl-2-oxazoline) with various block lengths is synthesized and explored as binders in S/C composite electrodes in Li-S cells. While the electrochemical analyses show that although the sulfur utilization and capacity retention of the tested electrodes are similar, the integrity of the as-cast electrodes can play a key role for power capability.

Keywords

lithium-sulfur battery
binder
block-copolymer
polyethylene
polyoxazoline

Supplementary materials

Title
Description
Actions
Title
SI
Description
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.