DeepPocket: Ligand Binding Site Detection and Segmentation using 3D Convolutional Neural Networks

21 May 2021, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

A structure-based drug design pipeline involves the development of potential drug molecules or ligands that form stable complexes with a given receptor at its binding site. A prerequisite to this is finding druggable and functionally relevant binding sites on the 3D structure of the protein. Although several methods for detecting binding sites have been developed beforehand, a majority of them surprisingly fail in the identification and ranking of binding sites accurately. The rapid adoption and success of deep learning algorithms in various sections of structural biology beckons the usage of such algorithms for accurate binding site detection. As a combination of geometry based software and deep learning, we report a novel framework, DeepPocket that utilises 3D convolutional neural networks for the rescoring of pockets identified by Fpocket and further segments these identified cavities on the protein surface. Apart from this, we also propose another dataset SC6K containing protein structures submitted in the Protein Data Bank (PDB) from January 2018 till February 2020 for ligand binding site (LBS) detection. DeepPocket's results on various binding site datasets and SC6K highlights its better performance over current state-of-the-art methods and good generalization ability over novel structures.

Keywords

Ligand binding
Computer Aided Drug Design
binding site prediction
Deep Learning
Machine Learning
Convolutional Neural Network

Supplementary materials

Title
Description
Actions
Title
DeepPocket supp
Description
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.